The UCI protocol and available options

The Universal Chess Interface (UCI) is a standard protocol used to communicate with a chess engine, and is the recommended way to do so for typical graphical user interfaces (GUI) or chess tools. Stockfish implements the majority of its options as described in the UCI protocol.

Developers can see the default values for UCI options available in Stockfish by typing ./stockfish uci in a terminal, but the majority of users will typically see them and change them via a chess GUI. This is a list of available UCI options in Stockfish:

For developers the following non-standard commands might be of interest, mainly useful for debugging:

A note on classical evaluation versus NNUE evaluation

Both approaches assign a value to a position that is used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs (e.g. piece positions only). The network is optimized and trained on the evaluations of millions of positions at moderate search depth.

The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. The nodchip repository provided the first version of the needed tools to train and develop the NNUE networks. Today, more advanced training tools are available in the nnue-pytorch repository, while data generation tools are available in a dedicated branch.

On CPUs supporting modern vector instructions (avx2 and similar), the NNUE evaluation results in much stronger playing strength, even if the nodes per second computed by the engine is somewhat lower (roughly 80% of nps is typical).

Notes:

  1. the NNUE evaluation depends on the Stockfish binary and the network parameter file (see the EvalFile UCI option). Not every parameter file is compatible with a given Stockfish binary, but the default value of the EvalFile UCI option is the name of a network that is guaranteed to be compatible with that binary.

  2. to use the NNUE evaluation, the additional data file with neural network parameters needs to be available. Normally, this file is already embedded in the binary or it can be downloaded. The filename for the default (recommended) net can be found as the default value of the EvalFile UCI option, with the format nn-[SHA256 first 12 digits].nnue (for instance, nn-c157e0a5755b.nnue). This file can be downloaded from

https://tests.stockfishchess.org/api/nn/[filename]

replacing [filename] as needed.

What to expect from the Syzygy tablebases?

If the engine is searching a position that is not in the tablebases (e.g. a position with 8 pieces), it will access the tablebases during the search. If the engine reports a very large score (typically 153.xx), this means it has found a winning line into a tablebase position.

If the engine is given a position to search that is in the tablebases, it will use the tablebases at the beginning of the search to preselect all good moves, i.e. all moves that preserve the win or preserve the draw while taking into account the 50-move rule. It will then perform a search only on those moves. The engine will not move immediately, unless there is only a single good move. The engine likely will not report a mate score, even if the position is known to be won.

It is therefore clear that this behaviour is not identical to what one might be used to with Nalimov tablebases. There are technical reasons for this difference, the main technical reason being that Nalimov tablebases use the DTM metric (distance-to-mate), while the Syzygy tablebases use a variation of the DTZ metric (distance-to-zero, zero meaning any move that resets the 50-move counter). This special metric is one of the reasons that the Syzygy tablebases are more compact than Nalimov tablebases, while still storing all information needed for optimal play and in addition being able to take into account the 50-move rule.

Large Pages

Stockfish supports large pages on Linux and Windows. Large pages make the hash access more efficient, improving the engine speed, especially on large hash sizes. Typical increases are 5..10% in terms of nodes per second, but speed increases up to 30% have been measured. The support is automatic. Stockfish attempts to use large pages when available and will fall back to regular memory allocation when this is not the case.

Support on Linux

Large page support on Linux is obtained by the Linux kernel transparent huge pages functionality. Typically, transparent huge pages are already enabled, and no configuration is needed.

Support on Windows

The use of large pages requires "Lock Pages in Memory" privilege. See Enable the Lock Pages in Memory Option (Windows) on how to enable this privilege, then run RAMMap to double-check that large pages are used. We suggest that you reboot your computer after you have enabled large pages, because long Windows sessions suffer from memory fragmentation, which may prevent Stockfish from getting large pages: a fresh session is better in this regard.

Compiling Stockfish yourself from the sources

Stockfish has support for 32 or 64-bit CPUs, certain hardware instructions, big-endian machines such as Power PC, and other platforms.

On Unix-like systems, it should be easy to compile Stockfish directly from the source code with the included Makefile in the folder src. In general it is recommended to run make help to see a list of make targets with corresponding descriptions.