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Abstract

I compare the matrix representation of the basic statements of Special Relativity with the con-
ventional vector space representation.

It is shown, that the matrix form reproduces all equations in a very concise and elegant form,
namely: Maxwell equations, Lorentz-force, energy-momentum tensor, Dirac-equation and La-
grangians.

The main thesis is, however, that both forms are nevertheless not equivalent, but matrix repre-
sentation is superior and gives a deeper insight into physical reality, because it is based on much
less assumptions. It allows a better understanding of Minkowski spacetime on the basis of matrix
algebra.

An escpecially remarkable result of the consequent usage of this algebraic concept is the for-
mulation of Diracs equation in a novel matrix form. This equation explains the non-existence of
righthanded neutrinos and can be generalized to include a new variant of Yang-Mills gauge fields,
which possibly express unified electro-weak interactions in a new way.
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1 Introduction

The possibility to represent Minkowski spacetime vectors with 2x2-matrices is well-known since the
1920ies (e.g. [10], [8], pp. 61). It is a consequence of the fact, that the Lorentz-group is homomorphic
to the group of unimodular binary matrices SL(2, C).

This matrix representation is mostly used to show, how covariant equations for spinors can be derived.
But it is widely ignored, that on the other hand, this also can lead to another description of spacetime
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itself. There also seems to exist a general consensus, that both representations (matrix form and usual
component form) are actually equivalent methods to express the equations of Special Relativity, and
consequently the matrix form is used very rarely in publications.1

One principal reason for this is surely the fact, that conventional component formulas can be formally
applied to an arbitrary number of dimensions of the vector space, while the matrix form is only possible
for the four-dimensional case.

In this article I show, that the presumed equivalence of both forms is not true. Although the equations
are isomorphic (otherwise they would be wrong), significantly less prerequisites are needed to derive them
for the matrix form.

The most important prerequsite is the existence of a metric tensor with the signature (+−− −), that
has to be postulated for the vector space, but it is automatically determined for the matrix formalism.
In principle, any metric signature would be conceivable for the vector space. Since the metric tensor is -
at least implicitely - contained in every relativistic equation, this statement shows, that the matrix form
is superior.

Additionally, the homogeneous Maxwell equations, which have to be introduced independently in
SRT in component form, are a direct consequence of the inhomogeneous Maxwell eqs. here.

The last and most important argument gives the reformulation of the Dirac equation in matrix
form. All arbitrary free parameters without physical content, which arise in the 4-spinor form, vanish
here, because the remaining similarity transformations can be understood as gauge transformations.

Thus I propose a change of perspective here: Theoretical physicists should consider, that the physical
spacetime primarily is a matrix algebra and the component formulation is only a derived one, which has
several disadvantages. I will denote this perspective as ”matrix spacetime” (MST) compared to ”vector
spacetime”.2

Please note also that, if this point of view is adopted, this is not only a formal aspect, but it has
far-reaching consequences for many other physical theories. E.g. General Relativity must be modified
from its original form, since the metric tensor cannot be used as field variable.3 Also all theories with
more than four spacetime dimensions (string theory, etc.) are obviously excluded.
This quite restrictive point of view must be seen as an advantage. One may compare this with the
principle of special relativity. It is so powerful, because it is so restrictive, namely it rules out all not
covariant eqs. The same holds for the gauge invariance principle.
As long as there is no real evidence for any extra dimensions, this description of the physical world has
at least a to be considered as possible and worth discussing.

This new perspective also may lead to new theories, e.g. if possible generalizations of this form are
considered. Also, one might look for an underlying spinor structure for the matrix algebra, which is
e.g. the main thesis of the “twistor-theory” presented in [9] (Vol. II) but has not led to a satisfactory
physical theory yet.

In conclusion I have to say, that many of the equations presented here, can also be found scattered in
other publications. However, their derivation and notation here is surely often more concise and straight
forward.

New in any case, is the notation of Diracs eq. as “matrix equation”. Also the corresponding
Lagrangian, I have not found in another publication. This new form perhaps allows new insights in
particle physics, esp. unified ectro-weak theory.

1One of the first fundamental papers on this topic is [11], where the idea of em. gauge symmetry was invented and some
of the concepts and eqs. below can be found, but in a quite unusual notation for contemporary readers. Also, he focuses
there on gravitation and curved space-time and many of his presumptions were invalidated if the following years.
A newer, quite voluminuous work is [9], where the authors try to give a fundamental overview from a mathematical point
of view. They also focus on GR and various kinds of generalizations.
In neither of both works the rigorous physical interpretation is adopted, which is proposed here.

2Compare e.g. [4], where a similar concept with a four-dimensional algebra based on the Clifford-matrices is presented.
He uses a similar term ”spacetime algebra” (STA).

3The 4 basis matrices {τµ} introduced below, or equivalently the 16 coefficients aν
µ, which play the role of tetrades, have

to be used instead. More detailled discussions of this can be found again in [11] and [9]
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2 Matrix Representation of Minkowski-Vectors

Let me start with the 4-dimensional vector space of real numbers V 4 = {(x0, x1, x2, x3)}. This can be
mapped one-to-one to the set of hermitean 2x2 matrices M = {x}, when a basis of 4 linearly independent
hermitean matrices τµ = (τ0, . . . τ3) is given by (as usual, over double upper and lower indices µ = 0, . . . 3
is to sum):

x = xµτµ. (1)

These hermitean matrices x build a well defined subset of the binary matrix algebra. In the following
they are denoted as Minkowski-matrices and represented by boldface letters (except the Greek letters
ρ, τ, σ and the partial operator ∂).

Since this is a one-to-one map, it is clear that all relations written in one form can also be transcribed
into the other, and in principle no form can be given preference.
However, the crucial difference is, that one has to put a postulated metric tensor on top of the vector
space, to define a vector norm and get covariant equations there.
As shown below, for the matrix representation, the existence and form of this tensor is a natural conse-
quence of the algebraic structure.

For binary matrices holds:4 x̄ = xµτ̄µ and consequently the matrix determinant naturally defines a
bilinear norm in (xµ). This norm can now be identfied with the norm of the vector space. This is only
for 2x2 matrices possible, and vector dimensions greater than four are excluded.

The metric tensor g = (gµν) is then given by:

|x| = xµxν 1
2
T (τµτ̄ν)

︸ ︷︷ ︸
def
= gµν

= xµxνgµν . (2)

Obviously, symmetry follows gµν = gνµ and all are real numbers, as required.
On the other hand, the four matrices τµ (like every hermitean matrix) can be expressed as linear

combinations of the 3 Pauli-matrices σ1, σ2, σ3 and a fourth matrix σ0
def
= I =

(
10
01

)
:

τµ = aν
µσν , (3)

with 16 real coefficients aν
µ (for the vector space components this is to regard as a coordinate transfor-

mation: xµ → aµ
νx

ν).
Then follows from the known characteristics of the Pauli-matrices:5

gµν = a0
µa

0
ν − a1

µa
1
ν − a2

µa
2
ν − a3

µa
3
ν = aλ

µa
δ
νg

(0)
λδ , (4)

with g(0) = (g(0)
λδ ) = diag[+1,−1,−1,−1] as conventional Minkowski metric tensor. From this equation

follows, that all possible metric tensors are transformations of g(0) and locally this metric can always
be chosen. If the restriction of metric invariance (g = g(0)) is made, then the (aν

µ) are identical to the
Lorentz-group.

Consequently for simplification, the set of Pauli-matrices σµ is used in the following as basis. In this
case the components can be simply recovered from the matrix form x = xµσµ by

xµ =
1
2
T (xσµ) ⇐⇒ x = xµσµ. (5)

Explicitely it has the simple form x =
(
t+ z, x− iy

x+ iy, t− z

)
.

Because the matrix algebra includes addition and subtraction operations, also trivially the symmetry
under spacetime translations holds, i.e. it shows the complete Poincare group symmetry.

4the “bar” operation stands for matrix adjungation and |τ | for the determinant of the matrix τ , i.e. |τ |τ−1 = τ̄ holds.
T (τ) here denotes the scalar trace of τ , and from τ τ̄ = τ̄ τ = |τ |I follows |τ | = 1

2
T (τ τ̄).

5with the usual representation σ1 =
(
0,1
1,0

)
, σ2 =

(
0,−i
i, 0

)
, σ3 =

(
1, 0
0,−1

)
one easily checks for all pairs µ, ν = 0, . . . , 3 the

orthogonality relation: σµσ̄ν + σν σ̄µ = Ig
(0)
µν .
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3 Transformations and Covariant Forms

A Lorentz-transformation is represented here by an unimodular 2×2 matrix T ∈ SL(2, C), |T | = 1 and
a Minkowski-matrix transforms with:6

x → x′ = TxT †, (6)

which obviously preserves the hermitecity and the Minkowski-invariant |x|. It has of course 6 free real
(3 complex) parameters.7

The general product AB̄ (obviously AB is not covariant under proper LT) of any two Minkowski-
matrices A,B is then apparently a covariant matrix, because it transforms with:

AB̄ → (TAT †)(T̄ †B̄T̄ ) = T (AB̄)T̄ . (7)

The general scalar-product is the invariant expression, which is evidently always real:8

1
2
T (AB̄) = AµB

µ. (8)

Space rotations, as important special case, are the subgroup of matrices, obeying T † = T̄ (≡ T−1).
They additionally preserve the trace, which represents the time component x0 = 1

2T (x).9

Another important tranfsormation, which cannot be represented with any matrix T of this group, is
spatial inversion P. It is obviously described by10

x → xsp = x̄. (9)

It is remarkable, that P is closely connected to the matrix multiplication order, since a general
covariant equation of the form AB̄ = C transforms to B̄A = C̄sp.

4 Relativistic Electromagnetics

4.1 Maxwell-Equations

In conventional component notation one starts with the antisymmetric field tensor Fµν = −Fνµ, which
is composed from electric and magnetic field vectors ~E, ~B:

F01 = E1, . . . and F12 = B3, . . . , .

Then the 4 inhomogeneous Maxwell-eqs. are (with Jµ as 4-vector of current, see e.g. [1], p. 42)

∂Fµν

∂xν
= Jµ.

Additionally, the 4 homogeneous eqs. must be postulated:11

∂Fµν

∂xσ
+
∂Fνσ

∂xµ
+
∂Fσν

∂xν
= 0.

In the matrix form there is only one matrix equation, which includes either homog. and inhomog.
eqs.:12

∂F = J. (10)
6T † denoting the conjugate transpose (or hermite conjugate) of T .
7It is easy to show, that this group is homomorphic to the restricted Lorentz-group and the homomorphism possesses

the kernel T ∈ {I,−I} (see e.g. [9], pp. 16).
8Above product matrix (7), can be decomposed into two covariant expressions: a scalar commutator (which is this

scalar-product) and a traceless anti-commutator AB̄ = 1
2
(AB̄ + BĀ) + 1

2
(AB̄−BĀ).

9Since T is then is a similarity transformation, TxT−1, it is also clear that both eigenvalues of x are invariant.
10since σ̄0 = σ0 and σ̄1 = −σ1, . . .
11In some textbooks these eqs. are considered as consequence of the potential ansatz for F : Fµν =

∂Aµ

∂xν
− ∂Aν

∂xµ
. But this

ansatz would not be possible, if the homog. eqs. would not be fulfilled. So, in any case, two independent eqs. are needed
to describe the em-field. The potential ansatz in matrix form reads F = 1

2
(∂̄A− Ā∂).

12This matrix eq. actually consists of 4 complex, i.e. 8 real eqs.
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Proof: Here F is a traceless matrix (F + F̄ = 0), which combines the field vectors, here as traceless,
hermitean matrices E = Ekσk, (k = 1, . . . , 3) and B = Bkσk:

F = E + iB. (11)

The partial derivation operator ∂ is according the above a hermitean (Minkowski-) matrix with the
explicit form

∂ = σµ∂
µ = σµ

∂

∂xµ
=

∂

∂x0
+ σ1

∂

∂x1
+ · · · = ∂

∂t
+∇. (12)

Then the l.h.s. of eq. (10) can be decomposed into an hermitean and anti-hermitean term (vanishing,
since J is hermitean), which are both Maxwell eqs.

∂F = (
∂

∂t
+∇)(E + iB) = Ė +∇ · E + i∇×B︸ ︷︷ ︸

=J

+∇× E + iḂ + i∇ ·B︸ ︷︷ ︸
=0

q.e.d.

The Lorentz-covariance of (10) is guaranteed, when the following transformation rule for F is assumed13

F → F ′ = T̄ †FT †. (13)

For checking the mirror-invariance of (10) one must realize, that E,B transform as proper- and pseudo-
vectors, resp. under spatial inversion: Esp = Ē = −E and Bsp = −B̄ = +B. Thus Fsp = −F † = F̄ †

holds and consequently (10) is mirror-invariant.14

4.2 Lorentz-Force

In conventional component form the Lorentz-force is Kµ = FµνJ
ν . Here one has the matrix form,

which obviously gives a hermitean force matrix K:

K =
1
2
(JF + F †J). (14)

Of course, it is Lorentz-covariant and mirror-invariant.

4.3 Energy-Momentum-Tensor of Electromagnetic Field

Although it is not strictly necessary for the main thesis of this paper, I included this chapter, because it
shows quite impressively the power of the matrix formalism.15

Inserting the Maxwell eq. (10) into the Lorentz-force (14) immediately gives:16

K =
1
2
((F †∂)F + F †(∂F )) =

1
2
F †∂F =

∂

∂xµ

1
2
(F †σµF )

︸ ︷︷ ︸
def
= Tµ

=
∂Tµ

∂xµ
. (15)

This derivation, consisting only of two simple reorderings, is significantly more concise than the
corresponding component form (see e.g. [1], p. 50). Obviously the four hermitean matrices Tµ (with 16
real components) here represent the energy-momentum tensor.

To get the corresponding component form, one uses the general mapping formula (5), which here
leads to the 16 real components: T ν

µ = 1
2T (Tµσν).17

Then with the following explicit formula the symmetry of Tµν = Tνµ can be easily shown, with usual
formulas for the trace:

Tµν =
1
2
T (Tµσ̄ν) =

1
4
T (F †σµFσ̄ν). (16)

13Like necessary, for space rotations T̄ = T † then E, B transform independently as 3-vectors, but for proper LT, they get
mixed.

14From ∂spFsp = Jsp → ∂̄F̄ † = J̄, and after bar-operation and herm. conj. one gets the original eq. again, q.e.d.
15Of course, a general tensor with 16 real components, or a symmetric tensor with 10, cannot be represented by a single

2x2-matrix, but only by a set of matrices.
16the parentheses in the first terms denote the differential-operands of ∂, while in the underlined term it operates both

to the left and right
17and Tµ = T ν

µ σν



Matrix Representation of Special Relativity February 21, 2007 6

5 Relativistic Quantum Mechanics

In this section I will show, that relativistic quantum mechanics can be readily expressed with 2 × 2
matrices (which is well-known for a great part), but useless degrees of freedom are significantly supressed.

This is an especially important case, since in our contemporary understanding, quantum mechanics
and esp. Diracs eq. (with its various generalizations) is the fundament of the physical world. On the
other hand, this theory is surely not yet finished, and it is to expect that new insights will evolve in the
future, possibly within the framework of the matrix formalism.

Here closes the circle: the matrix formulation was first introduced for the description of quantum
mechanical spin and can now hopefully lead to a better understanding of physics.

5.1 Dirac-Equation

In most modern textbooks Diracs eq. is presented in the conventional component notation, with
the four Clifford matrices γµ (and ∂µ def

= ∂
∂xµ

) for the 4-spinor wave function as column vector ψ =
(ψ1, . . . , ψ4)T : (see [3], p. 50, [8] pp. 110)

iγµ∂
µψ = mψ. (17)

This is a mathematically very elegant form, but it is achieved at the price of loss of physical reality of
ψ. It exposes a great amount of ambiguity, since it is obviuously invariant under the so called similarity
transformations18 (see e.g. [3], p. 55):

γµ → UγµU
−1 and ψ → Uψ.

Here U is an arbitrary 4 × 4 matrix, containing 16 free complex parameters. This means, the formula
(17) allows a linear transformation, leading to different representations, with 16 complex parameters
without any change of the physical meaning. The components of ψ thus cannot represent any physical
entities directly. In my opinion, this is a great disadvantage of this formula.

For the derivation of the matrix form, I start with the Weyl-representation of the γµ

γ0 =
(

0,−I2
−I2, 0

)
, and γk =

(
0, σk

−σk, 0

)
, k = 1, 2, 3. (18)

This form has the important special feature, that here the 4-spinor can be decomposed into two 2-spinors
Ψ,Φ: ψ =

(
Ψ
Φ

)
, which transform independently under Lorentz-transformations (see below), and (17)

reads with them:
i∂Φ = −mΨ and i∂̄Ψ = −mΦ. (19)

An additional, external electromagnetic vector potential field A is as usual introduced by the substitution
∂ → ∂ − ieA:

(i∂ + eA)Φ = −mΨ and (i∂̄ + eĀ)Ψ = −mΦ. (20)

This bi-spinor form of Diracs eq. is well-known (although in most cases given in slightly different
notation, see e.g. [8], p. 70) and sometimes referred to as ”zigzag” model of the electron (e.g. [9]). From
(20) the Lorentz-transformation rules for the 2-spinors can be derived as:19

Ψ → TΨ and Φ → T̄ †Φ, (21)

leading to obviously covariant eqs. (20). Under spatial inversions both eqs. and consequently the spinors
are interchanging: Ψ ↔ Φ.

18They are not connected to a Lorentz-transformation, since the spacetime components are not affected at all.
19consider again that ∂ and A transform like ∂ → T∂T †
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5.2 Matrix-Dirac-Equation

It is not yet commonly known, however, that both parts of (20) can be combined in one single matrix
equation. This representation must be considered as the natural form of Diracs eq. in the MST context,
and it opens up new possibilities for its generalization.

To develop this matrix eq., the second equation of (20) is converted in the following manner. With

M
def
= i∂ + eA it reads M̄Ψ = −mΦ.

Now, one uses the general formula for every 2x2 matrix M (MT denoting transposed matrix):20

M̄ = ρMT ρ̄, with ρ
def
=

(
0, 1
−1, 0

)

and inserting this leads to MT ρΨ = −mρΦ.
Of this one takes the complex conjugate, using (MT )∗ = M† = −i∂ + eA:

(−i∂ + eA)ρΨ∗ = −mρΦ∗.

Here it is obviuously useful to define a new ”tilde-operator”21 for 2-spinors: Ψ̃
def
= ρΨ∗ and the last eq.

then writes (−i∂ + eA)Ψ̃ = −mΦ̃.
Then it is possible to combine this equation and the first of (20) as 2 columns into one 2x2 matrix
equation:

eA(Φ, Ψ̃) + i∂(Φ,−Ψ̃) = −m(Ψ, Φ̃).

Now one defines the “spinor-matrix” P
def
= (Φ, Ψ̃) (which is the replacement of the 4-spinor ψ) and notes

P̄ † = −(Ψ, Φ̃), and with the constant matrix S
def
=

(
i, 0
0,−i

)
finally gets:

eAP + ∂PS = mP̄ †. (22)

Although this formula at a first glance looks somewhat uncommon, esp. the right-side factor S in the
derivation term, it possesses all features and solutions of the original 4-spinor equation (17).
The 2x2-matrix S together with the operator on the r.h.s here ”magically absorb” all 4 Clifford
matrices γµ. It should be clear from the above, that the special form of S (S = iσ3), is the consequence
of the choice of γµ. A more general form shall be discussed below.

To demonstrate the novel power of this matrix eq., one can derive an equivalent bilinear form by
multiplicating it from left22 with P †, resulting in

eP †AP + P †(∂P )S = m|P |∗. (23)

Note, that this is still a matrix eq., although the r.h.s. is scalar (∼ I) and the l.h.s. terms are
Lorentz-invariants. And it is still equivalent to (22), provided P is not singular (|P | 6= 0).
This direct way is only possible by using matrix algebra. By utilizing this bilinear form, esp. many
computations, e.g. regarding gauge invariance, Lagrangian and conservations laws can be performed
much simpler.

According to above definitions, P transforms consistently with P → T̄ †P under Lorentz-
transformations and (22) is obviously covariant. Since T̄ † operates only from the left on P , the two
column 2-spinors of P transform equally and independently.
The mirror-invariance is guaranteed with P → Psp = P̄ † (since S = S̄†).

20A geometric explanation is, that the bar-operation as mentioned already, means spatial inversion, which is equal to the
combined operation of transposing (i.e. y → −y) and a rotation around y of 180o, which is performed by the transformation
T = ρ = iσ2.

21this operator obeys
˜̃
Ψ = −Ψ, since ρ2 = −1

22multiplication from right produces another eq. with the same r.h.s.
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Here also a similarity transformation is possible by right-side multiplication23 of P with a matrix U
obeying U = Ū†

P → PU and S → U−1SU, (24)

but this 2x2-matrix U has only 2 free complex parameters (4 real), compared to 16 above (since one of
the 4 real parameters is only a constant factor, there actually remain only 3 real free parameters).
Essentially this transformation says, that S (like U) can be any matrix obeying the condition S = S̄†,
which describes a subalgebra of matrices, which is isomorphic to the algebra of quaternions.

An obvious possibility to explain the remaining ambiguity physically, is discussed in chapter 5.4.

The gauge invariance of (22) and the corresponding Lagrangian (26) below is a bit different to the
conventional form, because P cannot be multiplied with a scalar complex phase factor eiλ, because the
mass-term would then transform with e−iλ. This impossibility to apply scalar phase factors is probably
the reason, that this quite simple and obvious formula has never been considered before. Also the usual
covariant replacement of the derivation operator ∂µ → Dµ = ∂µ − ieAµ cannot simply be transcribed to
D = ∂ − iA, but must be modified here.
However, one easily checks, that e.g. the gauge transformation

P → PeλS and eA → eA + ∂λ, (25)

where λ(x) is an arbitrary real spacetime function, is the correct form.24

The matrix S can be thus seen as replacement of the imaginary unit i, since it also obeys S2 = −1.

Stationary states, which represent bound states in atoms, are here similarly described by the ansatz
P = P0(r)e−εtS (with ε as energy), which results in (since ∂tP = −εPS)

(ε+ eA)P0 +∇P0S = mP̄ †0 ,

and it is easy to show, that it has the the same solutions as the original Dirac-eq.

An important special case regards massless, uncharged particles, esp. neutrinos. We know from
experiments, that only lefthanded neutrinos exist, righthanded ones have never been observed. Diracs
original eq., eg. written in the form (19), leaves this fact unexplained, because both parts decouple with
m = 0, and so they have independent solutions for Ψ and Φ, representing both types of neutrinos.

The non-existence of righthanded neutrinos is a direct consequence of the matrix eq. (22), however.
With m = 0, e = 0 it simplifies to ∂PS = 0 (for this singular case, (22) is no longer equivalent to the
original Dirac-eq.). Here the factor S can be eliminated (by rhs multiplication with S−1) giving ∂P = 0.
Their solutions can only be lefthanded particles, which is to show by transforming it into momentum
space.

Another major advantage of the form (22) of Diracs eq should be shortly sketched at the end. Also
weak interactions in the V-A-theory are most simply expressed in this form. This is seen as another hint,
that this form is the primary one. It follows from the fact, that for the used Weyl-representation the
matrix γ5

def
= iγ0γ1γ2γ3 is a diagonal matrix: γ5 =

(
I2, 0
0,−I2

)
. And since weak interaction couples in the

4-spinor form with I4 ± γ5, so always in one of the eq-pair (20) the respective term vanishes.
Further considerations, regarding electro-weak gauge theory are done in chapter 5.4.

5.3 Lagrangian of Coupled Dirac- and EM-Field

Lagrangians play a very important role in modern field theory. They can readily be written in matrix
form using the above entities. For the combined Dirac- and em-field it is the sum of four scalar terms:

L = T (P †(∂P )S) + eT (APP †)− 2<|F | − 2m<|P |. (26)

This form demonstrates another advantage of the matrix representation. It can reveal subtle similarities
between some terms (here e.g. the 3. and 4. term), which are hidden in the component form.

23left-side multiplication always describes a Lorentz-transformation
24Note that eλS commutes with S and ∂eλS = (∂λ)eλSS.
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The validity of (26) can be proved by transforming it into component form, or better by deriving the
field eqs., namely (10) and (22) from it. This complete derivation must be omitted here, only some basic
steps should be stated.

In the first (differential) term, the partial operator should only operate to the right (as indicated by the
parentheses). Furthermore one notices, that this term is not real (as normally required for a Lagrangian
and is the case for the other three terms). However, the actually relevant spacetime integral is real:

I =
∫
d4x T (P †(∂P )S) = real, i.e. =(I) = 0,

which is proved with the vanishing of the integral
∫ T ((P †∂P )S) =

∫
∂µT (P †σµPS) = 0 by Gauss’ law

and partial integration.

The third term is the well-known Lagrangian of the electromagnetic field Lem = −2<|F | = E2−B2,
since F = 1

2 (∂̄A− Ā∂) = E + iB.

Consequently, the variation of A in the second and third term, leads to Maxwells eq. (10), if the
4-current of the Dirac-field is defined as

Je
def
= ePP † (= eP̄ †P̄ ). (27)

Variation of P † (or independently P ) in the terms 1, 2 and 4 leads to Diracs-eq. (22).

5.4 Yang-Mills Gauge-Fields in Matrix Form

The remaining possibility of similarity transformations P → PU (Ū = U†, see chapter 5.1) leads to an
obvious generalization of the Dirac eq. in matrix form (22) with four vector fields Bµ, µ = 0, . . . , 3:

∂PS + BµPσµ = mP̄ †. (28)

This also resolves the remaining ambiguities of P . Here B0 ≡ A is apparently again the em. vector
potential, which is invariant under this transformation. The other three fields (B1,B2,B3) mix however
(under Lorentz-trafos they act as normal MMs, like A), since with UσkU

−1 = am
k σm, (m, k = 1, 2, 3)

follows Bk → ak
mBm. With the additional restriction |U | = 1 this is the SU(2) group and its SO(3)

representation acts on the Bk.

One can now formulate the fascinating hypothesis, that by introducing a local non-abelian gauge field
U(x) the unified electro-weak field may be represented, similar to Yang-Mills theory (see e.g. [2]).

It is striking, that this gauge field shows remarkable similarities to the symmetry SU(2) × U(1) as
proposed by Weinberg and Salam for the unified theory, although it is evidently not equivalent.25

To get all 4 gauge fields, it is obviously necessary to use the infinitesimal generator of the complete
quaternionic algebra26 for U instead of the subset SU(2), which is:

U(x) = eλ0σ0+iλkσk ≈ I + λ0σ0 + iλkσk, k = 1, 2, 3,

with 4 real spacetime functions λµ(x), (|λµ| ¿ 1).
Then λ3(x) represents the em. gauge field, coupled with A ≡ B0 (if S = iσ3, as before (25) explained).
The other three gauge fields, however, lead to anti-hermitean vector fields (Bk)† = −Bk, because i∂λk

is anti-hermitean.
The gauge fields λ1,2(x) couple with ±B2,1, respectively. The gauge field λ0(x) obviously represents a
boost (since |U | 6= 1) and couples with B3, very different to the standard theory.

In conclusion should be emphasized the remarkable fact, that the gauge symmetry here is an intrinsic
feature of Diracs eq. in matrix form and its group structure is automatically determined. Moreover,
gauge- and Lorentz-symmetry here turn out to be “two sides of one coin” in the general transformation
formula for the spinor-matrix P → TPU .

25Here U(1) for electromagnetic gauge is a subgroup of SU(2).
26See again chapter 5.1; the only required condition for U is actually Ū = U†, which is fulfilled by this algebra.

Remember, that σ0 = I, so one gets Ū = U† = eλ0−iλkσk
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Further discussions, regarding covariant field equations for the associated generalized em. field tensors
Fµ, the complete Lagrangian and a possible Higgs mechanism for symmetry breaking, go beyond the
scope of this article and shall be considered in a subsequent paper.

5.5 2-Spinors and Minkowski-Matrices

At the end, some general remarks about the relations of spinors and matrices should be added. As stated
above, 2-spinors are represented by binary column matrices Ψ =

(
α
β

)
,Φ =

(
γ
δ

)
, . . ., which transform under

LT as Ψ → TΨ. Then for a any pair of spinors P = (Ψ,Φ) the determinant |P | = |Ψ,Φ| = αδ − βγ is
obviously a Lorentz-invariant, because TP = (TΨ, TΦ).

Also note the important fact, that spinor products, like e.g. the matrix:27

H = ΨΨ† =
(
α

β

)
(α∗, β∗) =

(|α|2, αβ∗
βα∗, |β|2

)
(29)

is obviously a Minkowski-matrix (in this special example a null-matrix: |H| = 0). That says, that
matrices can be constructed by spinors, but the opposite does not hold. Only null-matrices can be
uniquely (up to a phase-factor) decomposed into spinors.

It is also a fascinating feature of forms like (29), that they have a positive definite time-component,
which might help to explain the direction of time. From the realization, that 2-spinors are the algebraic
basis of all, it will be possibly feasible to develop a complete theory of spacetime only with spinors.

The crucial problem is however, how to retain the spacetime translation symmetry in such constructs.

6 Conclusions

In this paper I have presented the most important concepts of Special Relativity in 2x2-matrix
form, namely the entities and equations of electromagnetic interactions and the Dirac equation. Es-
sentially this form uses another algebraic concept of spacetime, rather than the conventional vector space.

Although the equations are obviously equivalent to conventional component formulation, I have
showed that the matrix form has several striking advantages, which suggest that this form should be
considered as the primary description of the physical world.

The main advantages can be shortly summarized:

• The metric tensor needs not to be postulated and spacetime can have no more than four dimensions

• The Maxwell equations are represented by a single equation rather than two independent

• The Dirac spinor field in the novel Dirac eq. in matrix form has much less of degrees of freedom
without any physical meaning and this form explains the non-existence of righthanded neutrinos

• A new type of Yang-Mills gauge fields arises from the generalization of this matrix Diracs eq.,
which possibly can describe electro-weak interactions

From a heuristic point of view, from a bunch of theories which describe the same phenomena with
equal accuracy, the one with the least prerequisites should be given preference.

Another major intention of writing this paper was, to encourage other theoretical physicists, to find
extensions of this concept for new theories. Also I hope to be able, to present a new concept for quantum
mechanics on the basis of this algebra, which can replace the wave function by a discrete model. Some
first ideas can be found in [6].

27In most textbooks a “dotted index” notation is used to describe conjugated spinors like Ψ†, that goes back to the first
publications on this topic. I do not adopt it here.
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